Null set(∅) is a subset of every set - prove it.

 Empty /Null Set is called the subset of every set,it can be proved  clearly with an example. 

Let,A is a set: A={a,b,c,d}

             ∅={} Null set

Now, if Null Set  (∅) is not the sub-set of Set-A; then there must be an element in ∅ which does not belong to set-A But,it is true that there is not a single element in ∅. That is why ∅ is the subset of A-set.

Because,a set would not be the subset of an other set in this condition, there must be a different element in that Set.

In this way for all sets it can be proved that Null set (∅) is a subset of every set.



Comments

Popular posts from this blog

মানব সম্পদ ব্যবস্থাপনা কাকে বলে।।Human Resource Management

হস্তান্তর পাওনা বা হস্তান্তর ব্যয় কাকে বলে?

মূল্য সংযোজন করের প্রকারভেদ। মূল্য সংযোজন করের সুবিধা